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Longitudinal dispersion within a two-dimensional 
turbulent shear flow 
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Department of Applied Mathematics and Theoretical Physics, Cambridge 

(Received 24 October 1968 and in revised form 6 January 1971) 

This paper describes some laboratory and numerical experiments made on the 
longitudinal dispersion in an open channel flow. Particular attention has been 
paid to the initial stages of the process. 

Physical arguments suggest that the streamwise dispersion of a line of marked 
fluid elements across a two-dimensional turbulent shear flow occurs in three 
distinct stages. These stages are identified by a change in the form of the distribu- 
tion of marked fluid elements in the flow direction. The skewed distribution of 
the first stage is readily identified by a constant value (approximately 1-1) for the 
ratio of the peak velocity (V,) of the distribution to the mean-flow velocity n; 
experiments using dyed fluid, made at this stage of the process, have revealed six 
identifiable features of the suggested distribution. The distributions suggested 
for the second and the third stage are consistent with the experimental h d m g s  
of Elder (1959) for the second stage and Taylor (1954) for the third stage. 

An attempt has been made to simulate the process numerically using a Marko- 
vian model. The results of the simulation confirm features suggested by physical 
arguments and are in agreement with the open channel experiments. 

The Lagrangian autocorrelation function is found to be related to the Lagran- 
gian velocity-history of marked fluid released from extreme positions on the flow 
cross-section. The correlation function, as expressed in terms of the velocity- 
history function provided by the numerical simulation, is 

R(t') = exp(-bt') 

where u* is the friction velocity and U(y') is the temporal mean velocity a t  a 
(non-dimensionalized) distance y' from the flow boundary. In  an open channel 
flow at a Reynolds number (based on friction velocity and channel depth) of 500, 
the numerical simulation provides the value of b = 0.536. 

The results of an experiment, in which the three-dimensional motion of small 
neutrally buoyant spheres was recorded in many small discrete time intervals, 
corroborate the theoretical suggestions and simulation results. 

t Present address : Department of Applied Mathematics, University of Western 
Ontario, London, Ontario, Canada. 



552 P. J. Sullivan 

1. Introduction 
A line of passively -marked fluid elements extending across a two-dimensional 

turbulent shear flow becomes dispersed in the streamwise direction primarily 
because of the variation in the mean velocity U(y). Turbulent cross-stream mixing 
reduces this primary contribution to longitudinal spreading. The dispersive effects 
of molecular motion and of streamwise turbulent motion can be neglected 
(excepting particular regions of the flow cross-section, cf. Elder (1959) and 
§ 2.4) with respect to  the main dispersive mechanism. 

A kinematic formulation for the rate of growth of the second moment of a cloud 
of marked fluid, relative to a co-ordinate system moving a t  a velocity c, has been 
given by Taylor (1921, 1954) who showed that 

- 

d X 2  - 2 U’ ( t )U‘ ( t+7)d7 ,  
-- at /: 

where X = x - ut, and U‘ = u - 8; u is the streamwise velocity of a marked fluid 
element, and the overbar is used to denote an  ensemble average of the marked 
elements of the cloud. Batchelor pointed out (see Taylor 1954; or Batchelor, 
Binnie & Phillips 1955) that the velocity of any marked fluid element released in 
a steady uniformly bounded shear flow ultimately will be independent of the 
release position and thus eventually become a stationary random function of 
time. Hence, following a sufficiently large time interval, say t > T, it follows that 
U = 0, dX2/dt = 2 A ,  where A is constant and 

p ( X ,  t )  = 2(nAt)-4 exp ( - X 2 / 4 A t ) .  

p ( X ,  t) is the probability-density function for marked fluid elements released 
from the plane X = 0 a t  t = 0. It would be difficult in practice t o  make direct 
measurements of the correlation function (1  ) because of the large value of T for 
which the fluid elements must be observed. I n  9 4.2  a method is discussed in which 
this difficulty may, to a large extent, be circumvented. For flow in a smooth- 
walled pipe of radius a, Taylor ( I  954) gave an  estimate of 10.1 au, for A which he 
deduced from the solution of the diffusion equation 

- € r -  = r  U ( r ) - + -  . 
:r( ::) ( ax ac at 

The value of B ,  the coefficient of radial transfer, in this equation was chosen by 
recourse to the Reynolds analogy. Taylor’s estimate of A was in general agree- 
ment with his experimental findings if we choose T = 15a/u,. B u t  the distances 
a t  which this information becomes relevant are seldom reached in practice. 

For t < T, direct account must be taken of the position of release of marked 
fluid on the flow cross-section. For the approximate interval 

4dlu, < t < 9d/u,, 

Elder observed a skewed distribution of dyed fluid in an  open channel flow of 
depth d. He ascribed the long upstream tail to  the retentive effects of the viscous 
layer and suggested the distribution could be discussed in two parts: a forward 
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Gaussian distribution representing dyed fluid over the major part of the cross- 
section, and a second Gaussian distribution representing dyed fluid in the viscous 
layer. Elder’s experiments show that the peak value of the forward Gaussian 
distribution has a constant velocity approximately equal to g ,  and that the 
second moment of the forward distribution increases linearly with time. This 
interesting result of Elder suggests that, with regard to the velocities of marked 
fluid elements released in the main body of the fluid, the state of the flow is very 
nearly stationary in a statistical sense. One object of the present work is to 
describe in detail the dispersion process for t < T: observations of a dispersing 
dye pulse (see, for example, figure 1, plate 1) suggest that it may be convenient to 
extend Elder’s idea and divide the cross-section of the flow into a larger number of 
regions of longitudinal dispersion. Such a separation will have to be made on the 
basis of the local structure of the dispersing flow. 

2. Three-stage description 
2.1. Physical arguments 

For t > T, the dispersion process is described by an effective longitudinal 
diffusivity A which depends upon the advective effects of the mean-flow velocity 
field, represented by ad ,  and on the cross-stream mixing arising from the fluctu- 
ating velocity field. This later quantity is specified by u,d and hence, on dimen- 
sional grounds, 

Similarly the longitudinal diffusivity in laminar flow may be expressed in the 

form A,/Ud = f ( B d / k ) ,  
where k is the molecular diffusivity, and Taylor (1953) showed that 

A,/Ud = (1/48)Ud/k,  

for flows in a pipe of radius d. Since the role of u, d in (2) (i.e. cross-stream diffu- 
sivity) is the same in turbulent flows as that of k in laminar flows, one expects a 
similar linear relationship for the turbulent case, viz. 

AIUd = f (Ud /u ,d ) .  (2) 

A/Cd  = BUlu, (3) 
or A = B(Vd)2/u,d. 

In both the laminar and turbulent flows, A/Ud is given as the ratio of two 
diffusivities. Thus it appears that the longitudinal dispersion is governed by the 
ratio of advective effects to cross-stream mixing. 

If this concept applies to local regions of the flow, then there will be consider- 
able variations in the longitudinal dispersion over the flow cross-section. For 
t < T one is concerned with the local behaviour of the longitudinal dispersion, 
and to this end an attempt has been made to relate the local longitudinal dis- 
persion to a co-ordinate system moving with the local velocity of the fluid U(y). 
Consider the cross-stream diffusivity to be given by vL, where v is the local root- 
mean-square value of the cross-stream velocity and 
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L is termed the local Eulerian length scale; w ( y )  = u ( y ) -  U(y ) .  Relative to 
the moving observer the advective dispersion is 6USy, where Sy is the cross- 
stream separation of two adjacent regions of fluid. A local dispersion coefficient 
can be expressed as D ( y )  = c(6USy)2/vL. To represent D(y) graphically let 
6U = (dU/dy)6y and let the constant, small increment, Sy2, be included in 
the (now dimensional) constant c such that D ( y )  = (dU/dg)2/vL. 

Townsend (1956) suggested that for sufficiently high Reynolds number the 
forms of U ( y ) ,  v and L for pipes and ducts will be universal and thus similar 
conclusions should apply to open channel flows. The following forms are a 
reasonable approximation to the measured values of Laufer (1951), in a duct of 
high aspect ratio, at Reynolds numbers of 12000, 30000 and 60000: 

V/U* = ( - 0*017y/d + 0.04) f (R,) ; R, = U, d / v ;  

(4) 
U(y)lu* = 2.431n ( Y l 4  +f(R*); 

f(R,) = 2.431n (R,) + 4.9; 

Lld = 0-21 for 0.5 < y/d < 1. 

A further assumption is made that L = 0-41 y for y, < y c 0-5d, where 

y* = 30d/R, 

is the depth of the viscous layer. The viscous layer is neglected here and is 
discussed in 9 2.2. 

The local dispersion D(y) is shown on figure 2 for the (typical) value of 
f (R, )  = 20. Two distinct regions of variation in D(y) occur on the flow cross- 
section. In  the upper portion of the flow (approximately y > &Z) D(y) has a low 
uniform value, thereby indicating relatively strong cross-stream mixing, weak 
advection in the streamwise direction and, as a result, relatively large concen- 
trations of marked fluid elements. Below this layer D(y) rapidly increases as the 
solid boundary is approached. A large value of D(y) indicates that the effect of 
advection is locally dominant and that the marked elements will accordingly be 
spread over a large streamwise span. It remains to assess the consequences of 
these subdivisions on the distribution p ( X ,  t ) ,  where 

p ( X ,  t )  = /om[oac(X, y, z, t )  dydx cdXdydz .  
//Om 

c ( X ,  y, z, t )  is the concentration of marked fluid elements. 

2.2. Three-stage model 

The first stage refers to the period of time shortly after the release of marked fluid, 
during which a typical fluid eIement, released in the upper layer, has had time to 
sample the variation in flow properties within this layer, but the interval should 
be short enough that there is no significant flux of marked fluid from this layer. 
Because D(y) is uniform in this region the streamwise spread of marked fluid, 
relative to the moving observer, is independent of y. Thus 

r a  
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will be symmetric about a co-ordinate system moving with the constant mean 
velocity 

K = ( 2 / d ) / i d  U(Y)dY, 

where from (4) x 1.10 for 200 .c R, < 800. 

10 20 30 40 50 60 

10 L/d D(Y) 
I I I 

0.04 0.06 0.08 

l q r r  * 
I I 

15 20 25 

UlU, 

FIQIJRE 2. Typical variation in U ,  v, L, D(y) across a two-dimensional 
bounded turbulent shear flow (viscous layer omitted). 

The dominance of cross-stream mixing within this layer suggests that marked 
fluid released in, and remaining in, the layer would soon sample the variation 
existent within the layer, and its motion accordingly become independent of the 
release position. The symmetrical curves describing the streamwise distribution 
of these marked elements may be expected to settle down fairly rapidly to a 
Gaussian form. The longitudinal dispersion of these elements can be charac- 
terized by an effective non-dimensional diffusivity, A ,  = D,/u,d, where D, is the 
value of the longitudinal dispersion in this layer. Marked fluid migrating to the 
lower layer, y < i d ,  is rapidly advected upstream (relative to the moving 
observer) as a result of the high values of D(y) in the lower layer. Hence the 
forward part of p ( X , t )  describes marked fluid particles that are exclusively 
resident in the region y > t d .  Because of the relatively low value of D(y)  for 
y > i d ,  the skewed distribution p ( X ,  t )  has a dominant downstream Gaussian 
portion. Since there is a net flux of marked fluid from the downstream-upper 
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region of the flow cross-section, the modal value of p ( X ,  t )  during the first stage 
diminishes at  a rate faster than the t-t rate that would occur in a system with no 
overall mass efflux. 

The second stage refers to a time interval during which marked fluid, released 
in the region y > y+, has had time to sample the flow variation within this region, 
and before a significant flux of marked fluid into the viscous layer has occurred. 
The dominant forward feature ofp(X, t )  during the first stage diminishes because 
of longitudinal dispersion within the upper layer, and through the flux of marked 

Property 1st stage 2nd stage 3rd stage 

Form of p(x ,  t )  

A1 < A ,  < A ,  
Dilu*d - 0.2 open cha.nne1 - 5 open channel - 11 (pipe) 

Area described + d < y < d  y * < y < d  O < y < d  
by Gaussian 

Peak decay rate > t-3 > t-4 t-t 
Peak to  mean - 1.10 
veloctity ratio 

- 1.02 1 

Approximate tu*/d > 0.5 tu*/d > 4 &*id > 30 
time of relevance 

TABLE 1 

fluid out of the forward part of this layer. Subsequently the modal value ofp(X, t )  
occurs upstream (e.g. closer to the centre of gravity of the dispersing cloud) 
relative to that of the first stage. During the second stage, the distribution of 
marked fluid about a co-ordinate system moving with a velocity 

(i.e. slightly in excess of 8) is Gaussian and the dispersion of this fluid is charac- 
terized by an effective longitudinal diffusivity A ,  = D,/u,d, where D, is the 
value of the longitudinal dispersion in this layer (viz. y* < y < d). 

The advective effects of the viscous layer translate migrant marked fluid from 
y > y+ upstream, relative to the forward part of the dispersing cloud. Thus 
p ( X , t )  is skewed in the second stage with a dominant downstream Gaussian 
section resulting from marked fluid particles residing in the region y > y+. As in 
the first stage the modal value diminishes faster than it would in a bound system 
because of the flux of marked fluid into the viscous layer. 

Finally, in the third stage, all of the marked fluid has sampled the entire flow 
cross-section, including the viscous layer, and p ( X ,  t )  is a Gaussian distribution 
relative to a co-ordinate frame at  the position x = vt. A non-dimensional 
diffusivity A ,  = D,/u, d then describes the longitudinal dispersion taking place 
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over the entire cross-section and the modal value of p ( X ,  t )  diminishes at a rate 
proportional to t-4. The effective longitudinal diffusivity in the three stages 
describes fluid encountered in regions of the flow with successively higher values 
of D ( y )  and as a result A ,  < A ,  < A,. The values of A i  are expected, by (3), to be 
linear functions of ( U/u*),, except for hydraulically rough flows where, for a given 
roughness and sufficiently large R,, (U/u*)  is a constant. 

The three stages refer to three distinct forms of p ( X ,  t )  which arise from the 
successive importance of three areas of the flow cross-section, so chosen because 
of their differing ability to disperse marked fluid in the streamwise direction. 
The successive dominance of p ( X ,  t )  by marked fluid within the three areas leads 
to these three distinct stages. Some details of the three stages may now be 
compared with experimental data. A summary of the distinguishing features of 
each stage is given in table 1 with the time of relevance of each description 
approximated from the data of Elder (1959)) Taylor (1954), and from the 
experimental results of 8 2.4. 

The experimental results of Elder (cf. $3)  agree with the description of the 
second stage of the process: for flow in an open channel these results suggest that 
A ,  2: 5. Taylor (1954) and Batchelor et al. (1955) confirm the foregoing description 
of the third stage. Taylor, however, suggests that the value of A ,  for a pipe flow is 
independent, for sufficiently high values, of the Reynolds number. The second 
and third stage descriptions are consistent with experimental evidence, except 
for the dependence of A ,  on R, which has not yet been properly verified (cf. 3 3.3); 
it thus remains to compare the first-stage description with experimental obser- 
vations. 

2.3. Experimental investigation 
The experiments described herein were made in an open channel of 8 m length 
and 0.8 m width. An experimental working section (2.45 m by 046 m) was set 
out between the growing side-wall boundary layers and beginning at  the down- 
stream position where the floor boundary layer extends over the flow depth. 
Measurements of U(y), using a miniature current meter, indicate that the flow 
in the working section is two dimensional and is well represented by the boundary- 
layer expression, 

U(y)/u, = 2-43 In (yu,/v) + 4.9, 

which was suggested by Clauser (1956). 
The ‘marked fluid’ used for these experiments was an aqueous solution of the 

dye Gentian Violet which was very nearly neutrally buoyant in water. This 
solution was injected through the free surface in the form of discrete, reproducible, 
pulses with sufficient momentum to penetrate the viscous layer. The initial 
column of dyed fluid (nominally 2.5cm in diameter) would spread over about 
150 cm along the working section. The dispersing dye clouds were photographed 
and the optical densities of the dyed fluid on the negatives determined by means 
of a Joyce microdensitometer (Elder describes this technique in detail) to obtain 

a m  
C ( x ,  t )  = ‘1 J c(x ,  y, 2, t)dydz 

Q o o  
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I I I I I 

and 

.d 

where Q = / c (s ,y , z , t )drdydz  

and c is the concentration of the dyed fluid. In  this expression x1 = at, with the 
overbar denoting an averaged value of c a t  t from the release of (nominally 7 )  
similar pulses. It is assumed that p ( X ,  t )  = G ( X ,  t) .  

2.4. Experimental results 

The relevant measurements made from six different flow conditions are listed 
in table 2. The experimental observations, taken for values oft  such that 

0.5 < tu,/d < 4, 

were found to coincide with the first stage description. The following itemization 
sets out the details for comparison with the foregoing description (cf. $2.2). 
(i) The C(z, t) are skewed, and a nearly Gaussian forward section is followed by a 

h 
3 
% 

Simulated 

I 
0 . 

I I I t I 

FIGURE 3. Simulated and experimental depth-integrated concentration at R, = 790. 

long upstream tail (cf. figure 3). (ii) The forward Gaussia.n section of C(x , t )  is 
associated with dyed fluid resident in the region y 2 +d. (iii) The second moment 
of the forward Gaussian section grows linearly with time. (iv) The constant of 
proportionality of item (iii), i.e. A ,  = D,/u,d, lies in the range 0.1 < A ,  < 0.3. 
This is significantly less than the equivalent value of 4.61 found by Eldert for an 
open channel flow in the second stage. (v) A ,  appears to be a linear function of 
( (cf. figure 5). (vi) The peak velocity V, is a constant such that V,/o 1.10. 
The variation of V, over the range of Reynolds numbers used in these experiments 

the modal 
value of the Gaussian distribution. Corrected values are referred to throughout this paper. 

t Elder (1959) appears to have assumed the second moment to occur a t  
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is shown in table 2 and figure 6. (vii) The peak value appears to decay as 
exp ( - 0-3t),  i.e. more rapidly than t-4. 

The values of the non-dimensional lateral diffusivity are given in table 2. The 
average value of 0.12 is in reasonable agreement with the value of 0.16 found by 
Elder, if the low value of R,  - 250 used in Elder’s experiments is taken into 
account. 

If one makes the assumption that the additional contribution to the longitudi- 
nal diffusivity, arising from fluctuations in the streamwise velocity field, is 
approximately equivalent to the lateral diffusivity then this contribution to A ,  is 
not negligible. 

In  fact, for low values of R,, one expects A ,  to be determined almost entirely 
by the streamwise velocity fluctuations; this contribution becomes relatively 
less important with increasing R,. 

The open channel experiments appear to confirm the first-stage description of 
the process. The most convincing agreement is in the experimental values of 
V, z 1-10 v. Moreover, as already indicated, the description of the second stage 
and the third stage are compatible with previous experimental observations, 
and hence the concept of a three-stage model provides a basis for the comparison 
of the experimental results with a numerical simulation of the dispersion process. 

3. A simulation of the dispersive process 
3.1. Statistical model 

A simulation of the dispersion process is limited by a lack of available Lagrangian 
information. An attempt was made to simulate the process using the available 
Eulerian information in a pseudo-Lagrangian way. Thus a model akin to a 
random-walk process within a bounded region was constructed. Incorporated in 
the model were path lengths, fluctuating velocity scales, convective time scales 
and mean velocity scales that were functions of position. A digital computer was 
programmed to calculate the path of an initially prescribed particle position 
(i.e. ‘a marked element ’) as it proceeded through the statistical field variables. 
Many such paths were used to compile a probability distribution by means of an 
ensemble average. 

Fluid elements at a cross-stream position y are convected in the y direction with 
a velocity that is a statistical function of its position. The duration of influence of 
this velocity is also a statistical function of y. The elements travel through 
positions of differing mean velocity and accordingly there is a simultaneous 
streamwise spread of dye. For the purpose of the simulation, the streamwise 
velocity fluctuations were neglected and elements placed at  y were considered to 
have a velocity v and to be convected to a time interval Llv in an upward or 
downward direction relative to the mean motion. This latter process was 
assigned randomly and is the only random element in the model. 

This model assumes that fluctuating components exist, on average, for 
the time of one ‘eddy cycle’ and that the statistical functions of time scales, 
length scales, and velocity scales may be replaced by their mean values. It is 
anticipated, since many marked elements pass through these points on the 
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cross-section prior to compilation of their distribution, that an adequate 
representation can be realized in this way. No attempt was made to assume the 
statistical distributions of the variables since such added complexity would 
have been inconsistent with the approximate nature of the simulation. 

The lower spatial bound was assumed to occur at  the depth of the viscous 
layer, i.e. at y*, and when a marked fluid element encountered a boundary the 
values of v and L were recalculated. 

U* B Largest A ,  
R cl[cm] [cm/sec] R, [cm/sec] E error A,  (lateral) 

8550 13.7 0.403 500 7.18 1.075 0.02 0.085 
10250 13.1 0.500 582 8.93 1.093 0.02 0.130 
11950 12.1 0.619 665 11.2 1.110 0.02 0.220 
13650 10.2 0-826 750 15.3 1.100 0.05 0.260 0.108 
14350 8.95 0.990 784 18-5 1.122 0.02 0.293 0.110 
14500 7-32 1.21 790 22.9 1.125 0.05 0.295 0.133 

R = o d j v ,  E = V J o .  Largest error represents ratio of most distant reading from the 
mean to tho mean value of E. A ,  (lateral) = &LZ’2/dt; 2’ = Z/d, t’ = tu,/d, Z = lateral 
co-ordinate distance. 

TABLE 2 

- 

3.2. Simulation 

I n  the simulation the marked elements were given a cross-stream velocity 
appropriate to their position, and were allowed to travel for a time T = L/v. The 
resulting displacement a t  the end of this time interval has the components 

Ax = L / v / ;  U(Y)dY, 

Ay = f. LV~V = & L. 

At the next position y = y + Ay, x = x + Ax, the values of v, L and T were selected 
for the new values of y and again a random sign was attached to v. This procedure 
was repeated for the desired time and for sufficiently large numbers of marked 
elements to give a reliable ensemble average of the final distribution. 

Length scales and velocity scales in the simulation were non-dimensionalized 
using the depth and the friction velocity respectively. Thus x’ = x / d ,  y’ = y/d, 
L’ = L / d ,  v‘ = v/u*, 8’ = a/u*. The time variable was non-dimensionalized as 
t’ = tu,/d and the process was characterized by one parameter - namely R,. The 
universal forms of U ,  L, v (see 9 2.1 ) were used together with the assumptions 

U’(y) = 2*51n(y’)+f(R*), 

f(R,) = 2.5111 (R,) + 5.5; 

pipe or duct; 

and L’ = y’ for y’ < 0.2; L‘ = 0.21 for 1 < y‘ < 0.2. 

p(x’, y‘, t ’ )  is the probability density function describing the position of marked 
fluid elements over the flow cross-section following their release from the plane 
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x’ = 0. Generally, 5000 marked elements were uniformly spread over the depth at 
t’ = 0 on x’ = 0. The streamwise probability density function is then 

f l  

p(x’ ,  t )  = p ( d ,  y’, t’) dy’. J 0- 

....................................................... ....................................................... ...................................................... ...................................................... .................................... ............... .................................................... ..................... - . D - - . - - . - ^ _ - * - n . _ - - _ _ _ _ n _  1.. ...................................................... .. .*# -----n----n*_-nn”_”n^---nn--nn-ll- ....................................................... . . . . . . . . . . . . . . . . . . .  
90 I00 110 

2’ 

ji-: ..... 
..... *a ..... ..... ..... 

0 

I20 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

300 350 400 
( Blu* l2 

F I U ~ E  5. First-stage dispersion coefficient. 0, experiment; 0 ,  simulation of 
channel; @, simulation of pipe or duct. 

36 F L M  49 
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3.3. Simulation results 

The form of p(x' , t ' )  in the simulation, during the first stage of the dispersion 
process, agrees with the experimental observations of $2.4. In  figure 4 a graph of 
p(x' ,  y', t ' )  shows that the forward Gaussian part of p(x', t ' )  is associated with 
marked fluid residing in the region y' > 8, as suggested in $2.2 (and see figure 1). 
The simulated value of A ,  is compared in figure 5 with experimental results. The 
peak value diminishes approximately as e-03t, in agreement with the experi- 
mental result. 

19 I I 

500 1000 2000 

R* 
FIGURE 6. Velocity of modal value during f i s t  stage. Symbols same as figure 5. 

1 
-, - s1 dy' = f (R*) .  

1 - y' 1/' u* 

In  figure 6 the variation of V, with R,, found from the simulation, is compared 
with the experimental result. Also included in this graph are the results of 
calculatioris made with various lower bounds to the uppermost layer. From these 
calculations it is suggested that the lower bound of this layer lies between 
y' = 0.5 and y' = 0.6. Measurements of Bentley & Dawson (1966) indirectly 
verify this result. In  their measurements the out-of-phase velocity between an 
input and a measured harmonic signal near the centre of a pipe flow was recorded. 
At R, = 700 the out-of-phase velocity was found to be 112 % of the mean-flow 
velocity, and this percentage decreased with increasing R,. 
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Slight modifications were made to the forms of the flow variables used in the 
simulation by altering the coefficients by 10 yo. The forms of the resulting dis- 
tributions were affected only by a very small amount, and in a predictable 
manner. The assumed variation of L' near the solid boundary was changed to 
L' = 0.41y' at y' < 0.5 and this did not alter the value of A,, thereby suggesting 
that the longitudinal dispersion in the upper layer is not directly dependent 
upon the structure of the lower layer. 

In  formulating the simulation process the role of a viscous layer was eliminated. 
The long tail of the skewed distribution produced in the first stage of the simula- 
tion was produced without recourse to an argument directly involving the viscous 
layer. This is in fact evidence for a distinctly different stage of the dispersive 
process from that described by Elder (1959). 

I I I I 

200 300 400 500 600 

( a/.* IZ 
FIWIRE 7. Simulation values of dispersion coefficient after large time. 

The results of the simulation are in general qualitative agreement with the 
experimental observations of $ 2.4. The apparent quantitative agreement for 
A ,  is fortuitous: the streamwise fluctuating velocity was not included in the 
simulation and compensation for this fact would lead to the displacement of the 
simulated values of A,  from the experimental values by an additional factor of 
0.1 (cf. $2.4). 

The dispersion process takes place within a bounded region y* < y' c 1, and 
ultimately p(x' ,  t ' )  becomes Gaussian about an axis moving with the mean 
velocity of this flow region. The longitudinal non-dimensional diffusivity of the 
simulation, at large times, should compare with A ,  of the second stage because of 
the elimination of the viscous layer from the simulation (cf. $ 2.2). Figure 7 shows 
the linear dependence of A ,  upon ( V/u*), and also that A ,  < A,: these results are 
in qualitative agreement with the physical arguments of $ 2.2. The viscous depth 
decreases with R, so that the second-stage diffusivity describes marked fluid over 

36-2 
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a cross-section which is increasing with increasing R,. The cross-sectional in- 
crease is caused by the addition of more flow area adjacent to the solid boundary 
where the local diffusivity is increasing (cf. 9 2.1). The difference between A ,  and 
A,  decreases with increasing R,, and the values of A ,  are less sensitive to changes 
in R, than are the values of A,. 

The simulation provides a qualitative confirmation of the three-stage descrip- 
tion and of the experimental observations of the dispersion process. One advan- 
tage of this simulation is that it does not formulate the process in terms of flux 
resulting from a concentration gradient, as would be the situation when using a 
' mixing length ' formulation. 

4. Lagrangian statistics in a bounded turbulent shear flow 
4.1. Lugrangian mean histories 

In a homogeneous field of turbulence the Lagrangian statistics are independent of 
the release position, but the opposite is generally true in a turbulent shear flow. 
Although the length scales of the turbulent fluctuations may be reasonably 

1 2 3 4 5 6 7 8 

tu* Id 

FIGURE 8. Simulation result for mean cross-stream position. R, = 500. 

small, these scales vary over the flow cross-section. This spatial variation leads to 
an exceptionally Iong period of time (or an equivalent streamwise length of flow) 
over which the motion of a marked fluid element must be recorded in order to 
compile these statistics. 

Consider the mean path (projected on a vertical plane lying parallel to the 
mean flow) of elements starting at different positions of the flow cross-section. 
Ultimately, the mean paths for all release positions must be constant, i.e. y = d 
for a pipe of radius d,  a duct of half-depth d,  or y = i d  for an open channel of 
depth d. Initially, for 8 short period of time, the mean path is a straight line, and 
thereafter it smoothly approaches its limiting value for large times. The length of 
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the straight-line segment depends upon the release position, and it terminates 
when a marked element, from a given release position, first reaches the boundary. 
For marked elements released near the centre of the cross-section the straight- 
line portion is longest. But even there it persists for a time which is short in 
comparison with the time required for the mean path of elements released at the 
boundary to reach their final value. Neglecting this small initial straight line 

0.05 0"0: 

0 a. 
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FIGURE 9. Simulation result for mean history of p. R, = 500. 
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FIUURE 10. illl,: Simulation result tu* for ld mean history of Zi'. R, = 500. 
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@, Y: = 3(l+Y*)-Y’. 
FIGURE 11. Simulation result. R, = 500. 0,  y: = y’-+(l+y*); 
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FIQURE 12. Simulation result. R,  = 500. 
a, positive Fe values; 0 ,  negative Xt values. 
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segment one expects the mean paths, for each release position on the flow cross- 
section, to be described by a part of the mean path for elements released at the flow 
boundaries (extremum paths). For example, the mean trajectory corresponding 
to a release position y = 0.8d in an open channel would be given by the segment 

t%ld 
FIGURE 13. Simulation result. R, = 500. 

a, positive ii: values; 0,  negative iil values. 

of the extremum curve between y = 0.8d and y = 0.5d (see figure 8). A typical 
particle, released at approximately y = d and subsequently arriving at y = O-Sd, 
differs in future behaviour from elements released at y = 0.8d because the former 
arrives with a positive velocity and the latter has no such bias direction to its 
motion a t  the time of release. This difference is considered to be a small effect and 
is neglected by the exclusion of the straight line segments of the mean paths. The 
same principle applies to the ensemble mean histories of the random variables 

x- Bt U- i7 
X I = -  and u’ = -, 

d u* 
although the ‘initially straight ’ description is not applicable to these variables. 
If  one takes the Eulerian limit for small times following the release, the logarith- 
mic variation of the mean flow field ensures that, although excursions in the cross- 
stream direction are equally probable, the resulting magnitudes of the streamwise 
velocities are not equally probable. Hence there results a net change in the 
Lagrangian ensemble mean value of the random variables X’ and u’. 

Figure 8,9,10 show the superposition of mean histories for release positions 
separated by 0.ld intervals over the region 0 - l d  < y < 0-9d. 
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For each position 1000 marked elements were used in an  open-channel 
simulation; the Reynolds number R, was 500. There appears to  be no significant 
departure from the extremum curve when the curves for the various release 
positions are superposed, and in addition the extremum curves appear to be 
symmetrical. Figures 11,12,13 show that the (semi-logarithmic) plots of X‘,  y‘ 
and u’ against t’ from which the following approximate expressions were derived: 

( 6 )  1 y:! = 0.44exp ( - 0*36t’), 

Xi = 0.134exp ( -  0*199t‘), 

u: = 2-98exp ( - 0.536t‘); 

the subscript e refers to  the extremum curve. 
The mean histories represent a loss of information relative to  the initial release 

position, and the times taken for the extremum curves to reach the final value 
should correspond to the Lagrangian integrated time scale. Initially straight 
segments of mean paths were not noticeable in the simulation with the time 
intervals used (At‘ = 0.2) to  construct y:; their neglect is justified in the model. 

4.2. Lagrangian autocorrelation from the mean velocity history 

The correlation function R(T) = u’(t’)u’(t‘+r) can be constructed by taking an  
ensemble average of the velocities of marked elements released at uniform inter- 
vals over the flow cross-section, and then averaging the result recorded at the 
individual release positions. Arranging R(r) into products of the mean U+ and 
fluctuating u+ components of the velocity u’ there are only two non-zero terms. 
Thus 

The second of these, the correlation of fluctuating velocities, is very much smaller 
than the first, (typically U+ N O.O5U+) and has a shorter correlation-time scale. 
Neglecting the second term, the correlation function for marked fluid elements, 
released at cross-stream position y i ,  is thus 

R(T) = u+(t‘)U+(t‘+T) fU+( t ‘ )U+( t ’ fT ) .  

where U+(y;, t )  is the mean history of marked elements released at 9;. In  terms of 
the extremum curve found in 5 4.1 this becomes 

R(y; ,  t ’ )  = U+(y;)aexp ( - bT’), 

where T’ = t r + t ; ,  with ti = In (U+(yi) /a) /b  for an extremum curve of the form 
u: = aexp ( - bt’). To compile the average correlation function R(t‘), made up 
from y; evenly distributed over the flow cross-section, one integrates R(y; ,  t‘) to 
obtain 

~ ( t ’ )  = /: ~ ( y ’ )  dy’ = ~ + ( y ’ ) a  exp ( - b ~ )  dy’ s: 
Thus R(t’) = exp ( - bt’) U + ( ! ~ ’ ) ~ d y ’  1: ( 7 )  
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The form of R(t’) could have been derived for some other random process (for 
example, correlating events described by a Poisson distribution). In fact, Taylor 
(1921) derived a similar correlation function to describe the dispersion of particles 
restricted to move in discrete single-value steps. In that study a correlation was 
assumed to  exist between successive steps and, in passing t o  the limit of a con- 
tinuous process, a correlation coefficient R(t) = exp ( - t / N )  was found, where 

N = lim [ r / (  1 - g ) ]  
7-0 

and g is the correlation between two successive time steps. By analogy, the 
coefficient l / b  = 1/0.536 in the expression derived from the simulation corre- 
sponds to N in the Taylor result. 

40 

20 

1 2 3 4 

tu* Id 

FIGURE 14. Simulation result at R, = 500. 0 ,  equation (8) using b = 0.536 and y* as 
limit of integration; 0 ,  measured directly in simulation. 

Taylor (1954) showed, for flow in a pipe, that the Lagrangian autocorrelation 
function is related to the growth rate of the second moment of a cloud of marked 
fluid particles. From Taylor’s work 

u‘(t‘)u’(t’+r)dT = 
dX’2 

dt’ 

Using expression ( 7 )  for R(r)  

d X ’ 2  
dt’ 

= ( 2 / b )  ( 1  -exp ( -  bt’)) V+(~’)~dy’.  

s,’ 1 
Hence X’2 = ( 2 / b )  [L’ - ( l / b )  (1 - exp ( - bt’))]! U+(y’)2dy’. 

0 
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The value of X T  as a function of t' is compared in figure 14 with the values 
determined directly from simulation. The lower bound of the integral was chosen 
at y; so that the calculated values would be consistent with the simulation. At 
large t ' , dX'2/dt' is a constant, and the derived expression attains 99.9 yo of the 
asymptotic value when t' = 7. This is consistent with the results from the simula- 
tion. The non-dimensional diffusivity, A,, of the third stage is given by 

A ,  = (lp) C' U+(y')%y'. 
J O  
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0 -  + t - f , = l  

FIGURE 15. Simulation result compared with equation (7) a t  R, = 500. 
0 ,  simulated values; -, exp ( - 0.5361'). 
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FIGURE 16. Comparison of simulation values of R(tl) where ti represents t' scaled with 
respect to ( u/u*)2usingR, = IOOOas a basis of comparison. Values of R, : @, 600; @, 1000; 
0 ,  1500; 0, 2000. 
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Thus A ,  is approximately 11 if the simulated value of b, obtained at  R, = 500 is 
used. The integrated value is a constant and is independent of R, for the universal 
curves selected in the simulation. In  3 2.2 the suggestion was made that A,  should 
be a linear function of ( U / U * ) ~  and that the extremum functions would change 
accordingly with R,. It was found in the simulation that, by rescaling the time 
variable t' by a factor ( U / U , ) ~ ,  a similarity with respect to R, is nearly realized. 
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In figure 15, the compilation of the correlation function from the simulation is 
compared with the derived expression. In  figure 16, the correlation functions 
determined from the simulation and scaled with respect to ( U / U , ) ~  appear to 
collapse onto a common curve thereby illustrating the R, similarity with this 
scaling. 

The numerical simulation appears to confirm the suggestion that extremum 
curves may be compiled in a piecewise manner, from observations over a rela- 
tively short time interval, and that the Lagrangian autocorrelation function, on 
the streamwise velocity, may be derived from the extremum curves of U+. 
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4.3. Experiment 
A photographic system was used to  record the motion of neutrally buoyant 
( N 4 mm diameter) spheres in the open channel flow described in $2.3.  The 
system was capable of recording the motions at discrete time intervals of 0.07 sec. 
The photographic apparatus was made to  move aIong the channel a t  a steady 
speed equal to the mean flow velocity. It consisted of a 35 mm camera, with a 
continuously advancing film, which recorded directly the plan view of the motion, 

I’ 

- 0 2 -  

FIGURE 18. Measured Lagrangian autocorrelation functions. 0,  R = R,; 8,  R = R,; 
0,  R = (U(y’) - ~ ’ ( t ‘ ) )  (U(y’) - ~ ‘ ( t ’  + T ) ) / (  U ( y )  - ~ ’ ( t ’ ) ) ’ ;  - - - , v‘ correlation found in 
simulation. 

FIGURE 19. A typical particle path measured in experiment. 
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and recorded the elevation view via a series of mirrors. The particles were painted 
white, the channel boundaries matt black, and by using a rotating, slotted disk in 
place of the usual camera shutter, two series of dots were simultaneously exposed, 
on different halves of the film. From fiducial marks along the channel floor and 
short pulses of light that were introduced at  regular intervals, the means were 
available for a continuous calibration of the various scale speeds and lengths. The 
three-dimensional motion, along with calibration data for each particle-passage 
along the flume, was recorded on a 30 cm length of 35 mm film. Information from 
the film record was transferred to digital format and subsequently stored on 
magnetic tape within the Titan digital-computer system used at Cambridge. 

0.3 1 \ 

“ 0  1 2  3 4 5 6 7 8 9 10 

t’ 

FIGURE 20. Experimental and simulated values of R(t’). @, experimental values R, = 620; 
0 ,  experimental values R, = 620 using measured extremum data; -, simulation result 
at  R, = 500. 

There were 150 records of particle trajectories used in the analysis. Figure 17 
indicates how the statistics converge as a function of the number of realizations 
for typical values oft’ used in the correlation. No systematic error was found to 
occur in the data reduction over the depth of the channel; the estimated error is 
approximately 10 to 20 % of the lateral and longitudinal root-mean-square 
velocity and approximately 10 to 50 yo of the value of the root-mean-square 
vertical velocity, for the respective velocity-component measurements. The 
experimental procedure is discussed in detail by Sullivan (1968). 

The measured Lagrangian autocorrelation of the fluctuating cross-stream and 
streamwise velocity components are presented in figure 18. The streamwise 
correlation appears to fall off at a slower rate than the lateral and vertical equiva- 
lents, and hence exhibits a qualitative agreement with the Eulerian correlation 
of these fluctuating velocities. A typical particle path in the turbulent shear flow 
is shown in figure 19 and the ‘eddy like ’ swirls in this path give one a sense of the 
‘length scale ’ of the fluctuating motion. 
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t! 

FIGURE 21. Experimental values for y:. 0 ,  experimental result for various release positions 
on flow cross-section; - -, simulation result, R, = 500. 
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FIGURE 22. Experimental values for Zl. See figure 21 for symbols. 
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The measured autocorrelation of U+ and of u' is compared in figure 20 with the 
result of simulation. Over the time interval for which the statistics are reliable 
(viz. t' < l), there is little apparent difference between the autocorrelations 
using the measured data in these two ways. The time scale in the figure was not 
altered to account for the small difference of R* between the simulation and 
experiment (R, = 500 and 600 respectively) since a 1 error in the value of 
the mean flow velocity would be as significant as this effect. 

4'0 t 

-3.0 I I I I I I I 
0.5 1.0 1.5 2.0 2.5 3.0 

t' 

FIGURE 23. Experimental values for a:. See figure 21 for symbols. 

Figure 21 shows that the extremum path, compiled from the data by super- 
posing path segments from 12 starting positions on the flow cross-sections, is in 
reasonable agreement with the simulation result. The existence of this extremum 
path immediately implies the existence of u: and Xl. Measured extremum curves 
for u: and XL are compared in figures 22 and 23 with the simulation results. The 
data for ui and X :  though not as complete as for y:, appears to confirm the general 
trend. 
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FIGURE 1. Dispersing dye viewed through glass side walls of channel. R, = 784. 
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